

bprofile 1.3

Chris Billington, Sep 27, 2017

bprofile is a wrapper around cProfile, gprof2dot and
graphviz, providing a simple context manager for profiling sections of
Python code and producing visual graphs of profiling results. It works on
Windows and Unix.

View on PyPI [http://pypi.python.org/pypi/bprofile]
| Get the source from BitBucket [http://bitbucket.org/cbillington/bprofile]
| Read the docs at readthedocs [http://bprofile.readthedocs.org]

Installation

to install bprofile, run:

$ pip install bprofile

or to install from source:

$ python setup.py install

Note

bprofile requires graphviz [http://www.graphviz.org/Download.php]
to be installed. bprofile looks for a graphviz installation folder
in C:\Program Files or C:\Program Files (x86) on Windows, and
for graphviz executables in the PATH on Unix.

Introduction

Every time I need to profile some Python code I go through the same steps:
looking up cProfile‘s docs, and then reading about gprof2dot and graphviz.
And then it turns out the code I want to profile is a GUI callback or
something, and I don’t want to profile the whole program because it spends
most of its time doing nothing.

cProfile certainly has this functionality, which I took one look
at, and thought: This should be a context manager, and when it exits, it
should call gprof2dot and graphviz automatically so I don’t have to
remember their command line arguments, and so I don’t accidentally print a
.png to standard output and have to listen to all the ASCII beep
characters.

BProfile provides this functionality.

Example usage

example.py

import os
import time
import pylab as pl
from bprofile import BProfile

def do_some_stuff():
 for i in range(100):
 time.sleep(.01)

def do_some_stuff_that_wont_be_profiled():
 os.system('ping -c 5 google.com')

def do_some_more_stuff(n):
 x = pl.rand(100000)
 for i in range(100):
 time.sleep(.01)
 x = pl.fft(x)

profiler = BProfile('example.png')

with profiler:
 do_some_stuff()

do_some_stuff_that_wont_be_profiled()

with profiler:
 do_some_more_stuff(5)

The above outputs the following image example.png in the current
working directory:

[image: _images/example.png]
see BProfile for more information on usage.

Class reference

	
class bprofile.BProfile(output_path, threshold_percent=2.5, report_interval=5, enabled=True)

	A profiling context manager.

A context manager that after it exits, outputs a .png file of a graph made
via cProfile, gprof2dot and graphviz. The context manager can be used
multiple times, and if used repeatedly, regularly updates its output to
include cumulative results.

An instance can also be used as a decorator, it will simply wrap calls to
the decorated method in the profiling context.

	Parameters:	
	output_path (str) – The name of the .png report file you would like to output. ‘.png’ will
be appended if not present.

	threshold_percent (int or float) – Nodes in which execution spends less than this percentage of the total
profiled execution time will not be included in the output.

	report_interval (int or float) – The minimum time, in seconds, in between output file generation. If
the context manager exits and it has not been at least this long since
the last output was generated, output generation will be delayed until
it has been. More profiling can run in the meantime. This is to
decrease overhead on your program, (even though this overhead will
only be incurred when no code is being profiled), while allowing you
to have ongoing results of the profiling while your code is still
running. If you only use the context manager once, then this argument
has no effect. If you set it to zero, output will be produced after
every exit of the context.

	enabled (bool) – Whether the profiler is enabled or not. Equivalent to calling
set_enabled() with this argument after
instantiation. Useful for enabling and disabling profiling with
a global flag when you do not have easy access to the instance
- for example when using as a decorator.

Notes

The profiler will return immediately after the context manager, and will
generate its .png report in a separate thread. If the same context manager
is used multiple times output will be generated at most every
report_interval seconds (default: 5). The delay is to allow blocks to
execute many times in between reports, rather than slowing your program
down with generating graphs all the time. This means that if your profile
block is running rapidly and repeatedly, a new report will be produced
every report_interval seconds.

Pending reports will be generated at interpreter shutdown.

Note that even if report_interval is short, reporting will not
interfere with the profiling results themselves, as a lock is acquired
that will prevent profiled code from running at the same time as the
report generation code. So the overhead produced by report generation does
not affect the results of profiling - this overhead will only affect
portions of your code that are not being profiled.

The lock is shared between instances, and so you can freely instantiate
many BProfile instances to profile different parts of your code.
Instances with the same output_path will share an underlying cProfile
profiler, and so their reports will be combined. Profile objects are
thread safe, so a single instance can be shared as well anywhere in your
program.

Warning

Since only one profiler can be running at a time, two profiled pieces
of code in different threads waiting on each other in any way will
deadlock.

	
do_report()

	Collect statistics and output a .png file of the profiling report.

Notes

This occurs automatically at a rate of report_interval, but one
can call this method to report results sooner. The report will include
results from all BProfile instances that have the same
output_path and no more automatic reports (if further profiling is
done) will be produced until after the minimum report_interval of
those instances.

This method can be called at any time and is threadsafe. It is not
advisable to call it during profiling however as this will incur
overhead that will affect the profiling results. Only automatic
reports are guaranteed to be generated when no profiling is taking
place.

	
set_enabled(enabled)

	Set whether profiling is enabled.

if enabled==True, all methods work as normal. Otherwise
start(), stop(), and
do_report() become dummy methods that do
nothing. This is useful for having a global variable to turn
profiling on or off, based on whether one is debugging or not, or
to enable or disable profiling of different parts of code selectively.

If profiling is running when this method is called to disable it, the
profiling will be stopped.

	
start()

	Begin profiling.

	
stop()

	Stop profiling.

Stop profiling and outptut a profiling report, if at least
report_interval has elapsed since the last report. Otherwise
output the report after a delay.

Does not preclude starting profiling again at a later time. Results
are cumulative.

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 bprofile	

Index

 B
 | D
 | S

B

 	
 	BProfile (class in bprofile)

 	
 	bprofile (module)

D

 	
 	do_report() (bprofile.BProfile method)

S

 	
 	set_enabled() (bprofile.BProfile method)

 	
 	start() (bprofile.BProfile method)

 	stop() (bprofile.BProfile method)

 nav.xhtml

 Table of Contents

 		bprofile 1.3

_images/example.png
example:15:do_some_more_stuf

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

